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Abstract—Long-term individual household forecasting is useful
in various applications, e.g., to determine customers’ advance
payments. However, the literature on this type of forecasting
is limited; existing methods either focus on short-term pre-
dictions for individual households, or long-term prediction at
an aggregated level (e.g. neighborhood). To fill this gap, we
present a method that predicts the monthly consumption of
individual households over the next year, given only a few
months of consumption data during the current year. Utility
companies can exploit this method to predict the consumption
of any customer for the next year even with incomplete data.
The method consists of three steps: clustering the data using
k-means, prediction using an ensemble of forecasts based on
the historical median distribution among similar households,
and smoothing the predictions to remove weather-dependent
patterns. The method is highly accurate as it finished third in the
IEEE-CIS competition (and ranks first when leveraging insights
from another team), focused on forecasting long-term household
consumption with incomplete data. It is also very scalable thanks
to its low computational complexity and weak data requirements:
the method only requires a few months of historical data and no
household-specific or weather information.

Index Terms—Long-Term Load Forecasting, Clustering, Smart
Meter, Household Consumption.

I. INTRODUCTION

ELECTRICITY forecasting has been studied for many
years and remains an important task. The roll-out of

domestic smart meters enables the collection of consumption
data of individual households. Electricity forecasting is one
way in which these data can be used to create value. Accurate
electricity consumption prediction is useful for a plethora
of applications including, but not limited to, determining
customers’ advance payments, supporting day-to-day grid
operations and strategic planning of energy grid extensions
[1]. Different applications require different types of forecasts:
day-to-day grid operations might require an hourly forecast
for the next day while strategic planning might require a
monthly forecast for the next ten years [2]. In this paper, we
propose a novel algorithm to forecast the monthly electricity
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consumption of individual households for the next year, given
the monthly consumption during the available months of the
current year.

The algorithm is one of the winning approaches at the IEEE-
CIS competition [3]. The goal was to forecast the monthly
consumption of multiple British households in 2018 using
smart meter data (electrical consumption), weather data from
2017, and additional household-specific information such as
the number of occupants, the number of bedrooms, etc. In
the original competition, our approach ranked third out of 71
participating teams, reaching state-of-the-art accuracy, and we
show that our method outperforms the approaches ranked first
and second when disregarding smart meters without battery
or when applying the same post-processing trick that the first
approache applied to those faulty smart meters.

A key asset of the algorithm is that it can make predic-
tions for a full year ahead even with incomplete data, e.g.,
even for households with one month of historical data. In
addition, the proposed approach has the benefit of requiring
low computational power, which grants the ability to scale
up across millions of households. Finally, together with the
other competition submissions, this model is one of the first
to solve the challenge of long-term electricity forecasting at
the individual household level in the literature.

A. Related work

The method proposed in this paper forecasts the monthly
electricity consumption of individual households one year
ahead, requiring only historical data of the previous year, at
least the data from one month.

Electricity consumption forecasting is a wide subject of re-
search. It has two dimensions: horizon and spatial granularity.
The horizon is the forecast length in the future. It can be
from few hours to multiple years. The spatial granularity is a
geographical specification, i.e., consumption of an appliance
or of an entire a country. Another relevant parameter is the
sampling rate, which can vary from one second to one year.
It is strongly linked with the horizon, e.g., if the electrical
consumption of a city had to be predicted ten years ahead,
an hourly forecast would not be accurate and thus not be
considered.

Most of the efforts in the literature have been focused
on long-term forecasting of coarse granularity, e.g., cities,
geographical zones [4], regions [5], [6] or countries [7]–[9].
In long-term forecasting, due to the randomness and high
volatility of the individual household electricity consumption,
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existing methods rely on averaging and aggregating these
consumption patterns to a coarser spatial granularity.

Methods for individual household, i.e., fine granularity,
consumption have been proposed [10]–[13]. However, they
are limited to short horizons. Typically they forecast a few
hours up to several days ahead and only for a small number
of households. The latter is either due to the complexity of the
algorithm used, leading to high computational requirements
[10], or the lack of available input data. For example, in the
Convolutional Neural Network - Long Short Term Memory
(CNN-LSTM) model in [11], the authors used a configuration
(i.e., three smart meters in specific household locations) that
is nearly impossible to replicate in thousands of households.
Another example of data scarcity is given in [12], where the
case study is based on an unoccupied house and all activities
are of an academic nature, which reduces stochasticity and
simplifies the forecasting problem. The model proposed in
[13] suffers the same drawback. It relies on typical daily
load profiles depending on three parameters: the number of
occupants, the time at which the first person gets up in the
morning and the last person goes to sleep and the part of the
day during which the house is unoccupied. The influence of
the individual appliances is also considered (electric oven, TV,
water heating, etc.). As with the previous works, this method
can hardly generalize to multiple households due to the type of
data required (e.g., disclosing the time of waking up or going
to bed might conflict with privacy laws in several countries).

Short-term individual load forecasting might require differ-
ent evaluation metrics [14] than long-term forecasting, e.g.,
to take in account the double penalty effect generated by the
consumption peaks. Classical error metrics, such as RMSE,
penalize twice for a peak that is correctly predicted by the
algorithm in terms of amplitude and duration, but displaced
in time: once when the peak actually happens and is not
predicted and once again when the peak is predicted but it does
not actually happen. Long-term forecasting, based on monthly
aggregated data for example, are less prone to peaks, thanks to
the averaging and are thus not subject to this double penalty
effect.

Research on long-term and fine granularity forecasting
mostly focuses on large energy consumption units, e.g., su-
permarkets [15] or public buildings [16], [17], where the
patterns are less stochastic than households. Others investigate
long-term residential consumption forecasting, per customer
type, depending on average income and other demographics
[18]. In the latter case, individual household consumption is
not predicted and the proposed method requires 30 years of
historical consumption data in the training phase.

The lack of research on long-term household forecasting
can further be seen in the extensive review of Zhao et al. [19],
where out of the 92 extensively reviewed papers, only eight
tackle residential load forecasting and just two consider fine
granularity residential monthly forecasting. The first proposed
method [20] tackles individual residential forecasting by disag-
gregating the household load into sixteen appliance categories,
using detailed information such as the historical consumption,
energy prices, weather information and demographics obtained
through a questionnaire. Although potentially accurate, this

method is not scalable due to required questionnaire data.
The second one [21] proposes an approach in three steps in
order to predict monthly consumption of six family houses
based on only one month of historical data of the heating
demand and the domestic energy demand as well as the indoor-
outdoor temperature difference. The first step is to generate
the consumption of a reference building using a simulation
tool based on blueprint data of a similar house, the second is
to generate additional data by scaling the measured data, the
third is to train a neural network on the extended data and
finally make predictions based on the actual indoor-outdoor
temperature and the reference building. Several limitations are
to be noted. Firstly, detailed blueprint data of a similar house
is necessary, secondly the total household consumption has
to be disaggregated into the energy used for space heating
and the energy used for the electric appliances and hot
water and finally, the data augmentation using scaling only
makes sense because of the location of the households under
investigation. Indeed, the houses are in Umeå, Sweden, where
the temperature varies between −30 °C and 30 °C.

B. Motivation and contributions
This paper aims to fill a gap in the literature regarding

long-term individual household forecasting, proposing a highly
accurate and scalable method based on relative consumption
patterns and ensemble learning. The proposed method is the
first of its kind, as it
• can forecast long-term consumption of individual house-

holds,
• can operate on households with incomplete data,
• can handle missing time samples,
• does not have complex and exogenous data requirements

such as weather data or household-specific attributes.
The method is highly accurate (as demonstrated by the award
in the IEEE-CIS competition [3]), has low computational
complexity and can be scaled to any number of households.
As motivated by the competition, this type of forecasting is
beneficial for customers, for accurate bill estimations. It is
also interesting for producers, to schedule the right amounts
of electricity production and procurement; for suppliers, to
detect potential discrepancies between self-declared and real
consumption; and for network operator in the grid manage-
ment and strategic planning. Additionally, long-term individual
household forecasting is one of the main research recommen-
dation topics in the context of the energy transition [9].

The proposed method has to overcome a series of challenges
that existing methods, due to the nature of the consumption
granularity, do not have to overcome. For instance, household
consumption patterns are more stochastic than aggregated data
(on the city or national level) and also more stochastic than the
consumption patterns for larger buildings such as supermarkets
or offices. The algorithms that work for a supermarket, offices
or a large building might not work for a household. Moreover,
households change distributors every year in order to obtain
the best rates. A commercial supplier might not have a full year
of historical data to predict the next year. It is thus crucial to
have a method which is reliable, works for households and
can predict longer horizons than the available historical data.
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C. Organization of the paper

The paper is organized as follows. Section II presents the
key attributes considered to build the model, based on a set
of realistic assumptions. The different steps of the method
are detailed in Section III, as well as the model parameters.
Appendix A analyzes the impact of each step on the final
performance metric. The case study proposed by the IEEE
Data Port platform is explained extensively in Section IV,
including information on the dataset, the benchmark models,
the performance metrics and the results. Finally the outcome
and perspectives are discussed in Section V.

II. KEY ATTRIBUTES OF THE MODEL

Before explaining the details of the model (see Section III),
it is important to outline the key attributes of the model and
the assumptions made to derive these attributes. The proposed
model forecasts monthly electrical consumption of individual
households for a full calendar year using incomplete household
data from the previous calendar year, where at least one
month of measurements must be available. The model does
not require household-specific information nor weather data.
The methodology presented consists of four key attributes,
which are based on assumptions, detailed in this section.

As the granularity of the predictions is monthly, most of the
hourly and daily stochastic behavior of individual households
averages out. In a monthly resolution, a lot of the stochastic
behavior of individual households, e.g., what time one goes
to sleep, plays little role. Instead, the factors that drive the
consumption at that level are more deterministic, e.g., how
large the household is. Since these deterministic factors are
likely to be shared across many households, simple methods
that use the mean or median consumption of households with
similar consumption patterns, should be able to make highly
accurate predictions. The first and second key attributes of the
model stem from this assumption. The first attribute is that
the proposed model disregards hourly and daily patterns,
and directly works with monthly data. Therefore, even if
hourly data from smart meters is available, we aggregate the
data to the monthly level and disregards the stochastic patterns
of lower resolutions. As a second key attribute, we make
predictions based on the median consumption of similar
households.

Although the absolute consumption of households differs
significantly, relative monthly consumption patterns have less
variance and are more similar. Therefore, the perceptual con-
sumption of each month with respect to the yearly consump-
tion, is shared among many households. This can be explained
by the fact that, independently of the household type or
size, similar human behavior is shared across the households.
Based on this observation, a third key attribute of the model
is to work with relative consumption patterns instead
of absolute ones. In other words, we normalize electricity
consumption data.

The model assumes that, since relative consumption patterns
are considered, additional household-specific information such
as household size and weather data play little to no role. In
particular, households with different types of appliances and

a different number of occupants might have the same relative
consumption profile, while households with the exact same
number of occupants and/or appliances might have different
relative profiles. Similarly, weather data are only available for
the current year. Using this weather data to predict the next
year can lead to over-fitting the model to the current year. As
an example, let us consider a household where November in
the current year is colder than December: that household will
likely have a larger consumption in November than December
due to the weather. Yet, that specific situation will likely
not generalize to the next year as December is, in general,
expected to be colder. Moreover, weather forecasts are usually
not available one year in advance and can thus not be used
for this horizon. For these reasons, the fourth model attribute
is to disregard exogenous features.

III. METHODOLOGY: RATIO APPROACH

In order to forecast the household monthly consumption,
different steps are applied sequentially. These can be divided
in three main parts. Firstly, the training pipeline, Fig. 1a, con-
sists of the preprocessing, data augmentation, normalization
and clustering. Secondly, the inference framework, Fig. 1b,
consists of the prediction step. Finally, the ensemble and post
processing steps are illustrated in Fig. 1c. All the modules are
detailed in Subsections III-A to IV-E. In these sections, we
provide a clear example for interpretability, while a general
notation is used in the figures.
• Preprocessing A real life dataset usually contains missing

data, due to defaults in the smart metering device for ex-
ample. For each household/smart meter, full missing days
are imputed using linear interpolation on a daily level.
Subsequently, the data are aggregated to the monthly level
using summation.

• Data Augmentation & Normalization As discussed in
Section II, it is better to consider relative as opposed
to absolute consumption. This conversion happens in
the normalization step. However, a consumption profile
depends heavily on the month in which the customer
signs up with a supplier and this is reflected in the
normalization. Therefore, our proposed method explicitly
considers the sign-up month. This is explained in more
detail in Section III-A.

• Clustering The relative consumption profiles are clustered
together in order to group similar profiles. Different
clusterings are executed per sign-up month. Profiles that
signed up later are retroactively added to clusterings for
earlier sign-up months. This is explained in more detail
in Section III-B.

• Prediction Each cluster can be used to make a prediction
for a certain household. This operation is explained
in Section III-C. Since multiple clusterings exist per
household, several predictions can be made. Section III-D
explains which clusters to consider and how to combine
their predictions in an ensemble approach.

• Postprocessing As a final step, the predictions are
smoothed using a standard moving average technique
in order to reduce the effect of weather patterns in the
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current year, as explained in Section II. By using a
moving average, the effects of weather are mitigated as
the final prediction is the average between nearby months.
This step has a parameter w describing the window length
for the moving average.

The entire process makes use of very few hyperparameters.
Only three parameters require tuning (the minimum cluster
size nmin,cluster, the number of nearest neighbors nsimilar, and
the window length w for smoothing), which are explained
in Section III-B, III-C, III-E respectively. As detailed in
Section IV-H and Appendix B, their value, although important,
is not very critical as the method is rather robust to the
selection of these three hyperparameters.

A. Data Augmentation & Normalization: relative consumption
profiles

The proposed method is based on using relative
consumption profiles, where a relative profile is the absolute
profile divided by the yearly consumption. For instance, the
relative consumption of a given household in April is the
consumption of April divided by the annual consumption.

The vector of monthly consumption of a household xj in a
year is defined as

Lxj = [l
xj

1 , . . . , l
xj

12 ] ∈ R12 (1)

where the subscripts of the vector’s elements denote the month,
e.g., lxj

1 is the monthly consumption value for January. For a
household xj that signed up in month s, the first s−1 elements
of the monthly consumption vector Lxj are missing:

Lxj = [NaN, . . . ,NaN︸ ︷︷ ︸
(s−1)

, lxj
s , . . . , l

xj

12 ] ∈ R12.
(2)

Therefore, we introduce the monthly consumption vector

Lxj
s =

[
lxj
s , . . . , l

xj

12

]
∈ R12−s+1 (3)

of household xj starting from month s. This notation will also
be used to discard the first few months of a profile even though
consumption data of the discarded months might be available.

To make the consumption profiles between households that
signed up in the same month comparable, the consumption
profiles L

xj
s are normalized into relative consumption profiles

R
xj
s as

Rxj
s =

[
rxj
s , . . . , r

xj

12

]
∈ R12−s+1.

=
1∑12

i=s l
xj

i

[lxj
s , . . . , l

xj

12 ].
(4)

After this transformation the total relative consumption of
each household sums up to one.

The relative consumption of households that signed up in
different months are still not directly comparable. For example,
a household xj that signed up in November has a relative
consumption in November that is around 50%, but if the same
household has signed up in January the relative consumption
during November would be closer to 8% (≈ 1/12).

To solve this issue, two steps are taken. In the clustering
step, to find similar consumption patterns, a different cluster-
ing is made for each sign-up month. In the prediction step,
only ratios between two months are considered as these ratios
are independent of the sign-up month (see section III-C for
details).

Furthermore, a data augmentation technique is applied to
maximally exploit the available data. When making a cluster-
ing for relative profiles that signed up in month s, we consider
not only the data of households that signed up in month s,
but also the data of the households that signed up earlier by
discarding any consumption before month s. For example, a
profile with sign-up month March, is also considered as if it
signed up in April, i.e., by disregarding March. Similarly, it
is also appended to the profiles signed up in May, i.e., by
disregarding March and April; and so on. The relative profiles
of the households that signed up earlier are re-normalized such
that each relative profile sums up to one. In the prediction
step, a similar procedure is applied, which is explained in
section III-C.

B. Clustering: grouping similar profiles

As households from different sign-up months have different
relative values, clusters are built for each possible sign-up
month. As an example, Fig. 2 illustrates the four clusters
obtained when considering the households that signed up in
January, using the k-means algorithm with euclidean distance
metric. Similarly, Fig. 3 illustrates the five clusters obtained
when considering the households that signed up in June,
including those that signed up before and from which the
measurements of the months before June have been ignored.
In both figures, for each cluster, the centroid (mean) of the
cluster is plotted together with a 90% confidence interval. The
k-means clustering is guaranteed to converge to an optimum,
although this might be a local optimum [22].

In order to introduce the notation for the prediction step
(Section III-C), let x1, x2, . . . , xN be the N households that
signed up in month s or earlier. The set of these households is
denoted by Xs. For each of these households, independently
of the data available, the clustering algorithm first defines a
relative profile R

xj
s ∈ R12−s+1 starting in s, as in (4). Let

Ss be the set of the N relative profiles starting in s (one per
household that signed up in month s or earlier):

Ss = {Rx1
s , . . . ,RxN

s }. (5)

The clustering step uses the K-mean clustering algo-
rithm [23] with euclidean distance to cluster the relative con-
sumption profiles Ss into a set of ms clusters with centroids

Cs = {C1
s , . . . ,C

ms
s }, (6)

where the centroid of the k’th cluster Ck
s is the mean of all

profiles in that cluster.

Ck
s = [cks,s, . . . , c

k
s,12]. (7)

The double subscripts v, w in cv,w represent the sign-up month
of the centroid and the given month within the centroid
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Fig. 1. Flowchart of the method proposed in this paper. The input and output data are in the rectangles and the steps executed are in the chevron arrows. (a) The
training pipeline is applied to all the profiles and aims to build the clusters based on the relative profiles. The data augmentation step is highlighted using the
indices of the profiles. There are nJan profiles which start in January, nFeb in February, and so on. The total number of profiles is n = nJan+nFeb+ · · ·+nDec.
(b) General framework for inferring the consumption of a month p for a profile with sign-up month s. (c) Ensemble and post processing pipeline: the individual
predictions from the inference cases, are combined using the median and smoothed in the post-processing step.
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Fig. 2. Example of clusters of relative consumption profiles starting in
January for the IEEE-CIS competition data. The number of clusters
obtained is four, determined using the elbow method. The centroid
(mean) of the cluster is plotted together with a 90% confidence
interval.

Fig. 3. Example of clusters of relative consumption profiles starting
in June for the IEEE-CIS competition data. The number of clusters
obtained is five, determined using the elbow method. The centroid
(mean) of the cluster is plotted together with a 90% confidence
interval. It is clear, when comparing Fig. 2 and Fig. 3 that the relative
values are different depending on the sign-up month.

respectively. For example c3,6 represents the month June
within the centroid C3, which has sign-up month March.

As k-means requires the number of clusters as an input,
the elbow method [24] is employed to estimate the number of
clusters. Moreover, to avoid unrepresentative clusters that do
not generalize, we discard clusters with fewer than nmin,cluster

profiles, as they are likely to contain outliers and may not be
representative enough.

C. Prediction: the power of the median via ensemble learning

The proposed model forecasts monthly electrical consump-
tion of individual households for a full calendar year using
(incomplete) household data from the previous calendar year.
Here, “predicted month” refers to the monthly consumption
value that we aim to predict in the next year, while “sign-up
month” refers to the month in which the household signed up
with the provider, meaning in the previous year.

Once we have clustered the relative profiles, we build the
predictions. To do so, for each household to be predicted, we
generate multiple predictions based on the clustered profiles
and compute the final prediction as the median of these pre-
dictions. We combine predictions to exploit ensemble learning
[25], i.e., combining predictions (or models) to reduce the bias

or variance errors of the individual predictions (or models). In
this context, we use the median instead of the mean to combine
the predictions because it is less sensitive to outliers.

The proposed method considers a slightly different ensem-
ble learning step depending on whether the prediction is made
for an earlier or later month than the month in which the
household signed up. In particular, the method distinguishes
three cases, as illustrated in Fig. 1b: (1) predicting an earlier
month than the sign-up month, i.e., a month for which there is
no monthly data of the previous year available, (2) predicting
a later (or equal) month to the sign-up month, i.e., a month
for which there is monthly data of the previous year available,
and (3) predicting the consumption for households that signed
up in December.

To explain the prediction step, it is easier to consider an
example. Let us consider again a household xj that signed up
in June. As explained in the previous sections, for household
xj , the relative profile is from June onward:

R
xj

6 = [r
xj

6 , . . . , r
xj

12]. (8)

1) Predicting an earlier month than the sign-up month:
The prediction process for this case is represented in Fig. 1b,
case 1. Let us assume that the month of March needs to be
predicted for household xj . For that, consider the centroids
C3 = {C1

3, . . . ,C
m3
3 } obtained from the clustering with March

as a sign-up month and denote the centroid elements as:

Ck
3 = [ck3,3, . . . , c

k
3,12] ∈ R10. (9)

Second, based on these m3 centroids, a set of re-scaled
centroids are generated {C̃1

3, . . . , C̃
m3
3 } which match the

scaling and size of the relative profile R
xj

6 of household xj

(with sign-up month June):

C̃k
3 =

[
c̃k3,6, . . . , c̃

k
3,12

]
∈ R7

=
1∑12

i=6 c
k
3,i

[
ck3,6, . . . , c

k
3,12

]
.

(10)

The part of the centroid before the sign-up month is disre-
garded and the centroid is re-scaled so that the new centroids
sum up to one. Third, we determine which centroid C̃k

3 lies
closest to the relative profile R

xj

6 , using Euclidean distance.
We thus have the optimal centroid

C̃?
3 = arg min

C̃k
3∈{C̃1

3,...,C̃
m3
3 }

‖C̃k
3 −R

xj

6 ‖22. (11)

Then, the original full centroid C?
3 ∈ R10 associated with

the optimal rescaled centroid C̃?
3 ∈ R7 is used to predict

March’s consumption for household xj . Seven predictions
are computed, based on the seven relative centroid values
c?3,3, · · · , c?3,12 of C?

3 and the seven absolute measurements
l
xj

6 , l7,
xj , · · · , lxj

12 of household xj . The predicted consump-
tion of month March l̂

xj

3 is calculated as the median of these
individual predictions:

l̂
xj

3 = median

Å
c?3,3
c?3,6

l
xj

6 , . . . ,
c?3,3
c?3,12

l
xj

12

ã
. (12)
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In other words, to predict the consumption of March for house-
hold xj , seven predictions are built: one for each available
monthly consumption. In particular, for each available monthly
consumption l

xj
q , a prediction is built by multiplying the ratio

between the representative relative consumption in March and
the representative relative consumption in month q, i.e.,

c?3,3
c?3,q

,
by the monthly absolute consumption l

xj
q . Then, the final

prediction is built as the median of the individual predictions.

2) Predicting a later month than the sign-up month: This
prediction process is represented in Fig. 1b, case 2. When
predicting a later (or equal) month than the sign-up month the
same principle applies. However, instead of working with the
clusters starting in the month that we want to predict p, the
clusters associated with the sign-up month s are used.

As an example, let us consider again a household xj that
signed up in June. However, let us consider the case of
predicting July rather than March. Now, instead of using the
m7 centroids {C1

7, . . . ,C
m7
7 } associated with the predicted

month (July), the m6 centroids {C1
6, . . . ,C

m6
6 } associated

with the sign-up month (June) are used.
The reasons for considering the centroids of the sign-up

month instead of the predicted month are twofold. First, as
the scale and length of each centroid Ck

6 ∈ R7 is the same as
the relative profile R

xj

6 ∈ R7, it is not necessary to re-scale
the centroids. Second, by working with the clusters associated
with the sign-up month, the number of predictions used to
compute the median is maximized. For example, while for
June as a sign-up month there are seven predictions, whereas
for July there are only six. Similarly to the previous case,
the closest centroid (in terms of Euclidean distance) to the
relative profile R

xj

6 is determined and denoted by C?
6, as in

(11). Similar to (12) in the previous case, the prediction l̂
xj

7

is built by computing the medians of the ratios between the
representative relative consumption of July and the represen-
tative relative monthly consumption of the available months
multiplied by the absolute monthly consumption:

l̂
xj

7 = median

Ç
c?6,7
c?6,6

l
xj

6 ,
c?6,7
c?6,7

l
xj

7 , . . . ,
c?6,7
c?6,12

l
xj

12

å
. (13)

3) Predicting households that signed up in December: As
the relative consumption for the households that signed up in
December is always 1, the described method cannot be used
to predict these households. Therefore, for these households,
a different approach is considered, represented on Fig. 1b,
case 3.

First, for each household xj and predicted month p, the
nsimilar most similar households are computed in terms of
absolute consumption in December that have data available
for month p. That is, to predict March we consider all meters
with data for March and December, in other words, the set of
households that signed up in month p or earlier.

Then, the nsimilar meters that are most similar to household
xj are found. Second, defining this set of similar households
by Sp,j = {xp,j

1 , . . . , xp,j
nsimilar

}, the prediction l̂
xj
p is built for

household xj and month p as the median of the historical
values of the similar households:

l̂xj
p = median

Å
l
xp,j
1

p , . . . , l
xp,j
nsimilar

p

ã
. (14)

To find the nsimilar most similar households, the k-nearest
neighbors algorithm [26] is applied. In this context, although
the parameter nsimilar should be optimized, empirical observa-
tion shows that it makes no difference for values nsimilar > 10.
We have tested values ranging from 10 to 100 during the IEEE-
CIS competition and empirically observed that it does not have
a significant impact. The value used in the final submission of
the method is nsimilar = 50.

D. Ensemble learning

As explained in the previous sections, the consumption of
each (household, month) pair is predicted by building multiple
predictions for each pair and then computing the median. The
reason for doing so is ensemble learning [25], i.e., combining
predictions (or models) to reduce the bias or variance errors
of the individual predictions (or models).

In general, when combining multiple predictions, the larger
the ensemble, the lower the variance or bias error and the better
the prediction becomes. To that end, as an additional step
during the prediction phase, a data augmentation technique
is performed to increase the number of predictions for each
(household, month) pair.

As before, let us explain this step with an example. Let
us consider the household xj that signs up in June and the
process of predicting July. As explained in Section III-C2,
this prediction is done by computing the median of seven
individual predictions (cfr. (13)).

To improve this prediction, additional individual predictions
are generated by assuming that the household did not sign
up in June but signed up in July. To do so, the exact
same procedure described in Section III-C2, is repeated but
assuming that the household has no data for June. This leads
to a set of new six new predictions, similarly to (13).

The same procedure is repeated by simulating the cases
that the household signed up in August, September, . . . , up
to November. The predicted month is now earlier than the
sign-up month, as in Section III-C1 (cfr. (12)).

Furthermore, a prediction for July can also be computed
by considering that the household signed up in December, by
applying the procedure described in Section III-C3, similarly
to (14).

So, in total, 7 + 6 + 5 + 4 + 3 + 2 + 1 = 28 individual
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predictions are generated to compute the prediction

l̂
xj

7 = median



c?6,7
c?6,6
· lxj

6 , . . . ,
c?6,7
c?6,12
· lxj

12

∣∣∣
s=6

c?7,7
c?7,7
· lxj

7 , . . . ,
c?7,7
c?7,12
· lxj

12

∣∣∣
s=7

c?7,7
c?7,8
· lxj

8 , . . . ,
c?7,7
c?7,12
· lxj

12

∣∣∣
s=8

...
c?7,7
c?7,11
· lxj

11 ,
c?7,7
c?7,12
· lxj

12

∣∣∣
s=11

median

Å
l
x7,j
1

7 , . . . , l
x7,j
nsimilar

7

ã∣∣∣∣
s=12



. (15)

Each row in the parentheses considers a different sign-up
month from June (s = 6) up to December (s = 12). This
is also illustrated in Fig. 1c.

In general, for a household xj that signed up in month s,
this data augmentation step creates extra predictions so that we
have a total of

∑13−s
i=1 i individual predictions that are used to

compute the median.

E. Post-processing: smoothing the predictions

As a final step, the predictions are smoothed using a
standard moving average technique. The motivation behind
doing so is to reduce the effect of weather patterns in the
year of the given measurements (see Section II for details).
By using a moving average the weather effects are mitigated
as the final prediction is the average between nearby months.
This step has a parameter w describing the window length
for the moving average. We tested three values as part of the
IEEE-CIS competition and observed that, although the window
size plays little role, five months is marginally better.

IV. CASE STUDY

A. Problem statement IEEE-CIS Competition

The problem tackled in this paper is the monthly electrical
consumption forecasting of thousands of households one year
ahead using the historical consumption of the previous year.
The proposed method was one of the award-winning methods
in the IEEE-CIS competition [3]. For the sake of open-
access and reproducibility, we use in this paper the same
case study as it allows any other researcher to verify the
results and re-use the data. In the competition, the goal was
to forecast the monthly consumption of 3248 households in
2018 using (i) half hourly smart meter data from 2017 for the
same households, with a different data availability for each
household, ranging from one to twelve months representing
different customer sign-up months, (ii) the weather data from
2017 for the households location at a daily resolution and (iii)
additional household-specific information such as the number
of occupants, the number of bedrooms, etc.

Fig. 4. Heat map of the monthly electrical consumption per smart
household (in kWh). The y-axis represents the individual profiles
and the x-axis the month. The color gives an indication of the
monthly values. In the colder months (November & December) the
consumption is higher. The faint white lines are missing data. It is
clear from the staircase structure that only the first 270 profiles have
twelve months of data available. The next 270 profiles have eleven
months of data available, and so on up to the last 270 profiles which
have only the month December.

B. Dataset

The dataset is provided by E.ON UK plc., in the context
of the IEEE-CIS competition on energy prediction from smart
meter data [3]. It consists of half hourly sampled time series
describing the electrical consumption of 3248 households
during the year 2017. It is a real world dataset containing
all the challenges of a real application.

First, the profiles have a different range of available his-
torical data, acknowledging that customers might have joined
the measurement campaign at different times during the year,
as is illustrated in Fig. 4. It is a two-dimensional representation
of the electrical consumption recorded by the 3248 smart
meters. It can be seen that the first 270 profiles (about a
12th of the profiles) have twelve months of historical data
available (from January until December), the next 270 profiles
have eleven months of historical data (from February until
December) and so on until the last part of the profiles which
have only one month of historical data available (December).

Secondly, there are missing days within the available
months, which are the faint white lines in Fig. 4.

Thirdly, additional household-specific information were col-
lected through surveys, such as the type of building, the
number of rooms, the number of occupants, and so on.
However these data are very sparse, for example there are
48% of missing data in the type of building, 42% in the
number of bedrooms, and always more than 97% for all the
other additional information.

Finally, the competition also provides time series weather
data, e.g., average, maximum and minimum daily tempera-
ture, associated with each household, in 2017. However, the
weather data of 2018 is not made available, as well as
the household consumption data of 2018. There is thus no
validation dataset. It is subsequently not possible to assess the
performance between the years. The performance could be
checked on a leaderboard via the organizers. Further details
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about the data are provided on the competition website [3].
The objective of the competition was to predict the monthly

consumption (in kWh) of the 3248 households for the year
2018 as well as the aggregated yearly consumption for the
same year. As explained by the organizers, the yearly total
consumption, computed as the sum of the monthly forecasts,
is of interest for billing purposes while the monthly values
are used by the energy trading teams to buy the right amount
of electricity on the energy market. As the data are real and
publicly available, we use it here for our case study. As
explained in the next section, we also consider the metrics
proposed by the organizers of the competition.

C. Performance Metrics

We use the metrics from the competition to measure the
performance of our method [3]. It is the weighted average
error of the yearly prediction error and the monthly prediction
error. In particular, the yearly relative absolute error (yearrAE)
is measured as

yearrAE =
1
n

∑n
j=1 |l̂xj − lxj |

1
n

∑n
j=1 |lxj − l̄|

(16)

where n is the total number of households, l̂xj =
∑12

i=1 l̂
xj

i

is the predicted total yearly consumption of household xj ,
lxj is the true total yearly consumption of household xj and
l̄ = 1

n

∑n
j=1 |lxj |. Then the relative monthly error (monthrAE)

is considered

monthrAE =
1

n

n∑
j=1

1
12

∑12
i=1 |l̂

xj

i − l
xj

i |
1
12

∑12
i=1 |l

xj

i − l̄xj |
(17)

where n is the total number of households,
L̂xj = [l̂

xj

1 , . . . , l̂
xj

12 ] is the predicted monthly consumption
of household xj , Lxj = [l

xj

1 , . . . , l
xj

12 ] is the true monthly
consumption of household xj and l̄xj = 1

12

∑12
i=1 |l

xj

i |.

Finally, both metrics are considered equally important and
aggregated as

totalrAE =
1

2
monthrAE +

1

2
yearrAE. (18)

D. Benchmark Models

As part of the competition, we tested several different
prediction models. In this paper, we compare our model, with
a baseline model that we designed and two well-known models
that were submitted to the competition by another contestant: a
linear regression (LR) model and an Autoregressive Integrated
Moving Average (ARIMA) model [27]. These have been
submitted by Dr. Kasun Bandara [28], [29]. In addition, we
outline the performance of the top three approaches (one of
which is the one proposed in this paper).

The naive benchmark we proposed, computes the monthly
average over the available months of 2017 for each individual
household and uses this monthly average as a prediction for
each of the months of the year 2018.

Wenlong Wu (first place) [3], [30] proposed a Machine
Learning pipeline consisting of data preprocessing, feature
engineering, algorithm modeling, post-processing, and en-
semble fusion. Fuzzy C-Means is applied, extracting twelve
clusters of profiles. The model is based on a Light Gradient
Boosting Machine (Light GBM) which makes use of bagging
and boosting techniques. First, this model is applied on all
the households individually, it learns the overall trend and
makes day-level energy prediction. Secondly, one model is
trained per cluster. Thirdly, a prediction is computed using
the mean of November and December values. These three
predictions are fused using a weighted average. Additionally,
Wenlong Wu found 32 profiles with zero consumption values
for November and December, which might be due to drained
batteries during the acquisition of training data. Assuming that
this problem is present in the collection of the ground-truth
(i.e., test) data as well, he manually set their predictions to
zero. We do not find this “battery trick” operation fair in
terms of evaluation, because it exploits a specific problem in
data collection. Finally a scaling step is applied, down-scaling
the summer months and up-scaling the winter months as he
noticed this improved the performance. The weather data and
additional household-specific information were not used. The
six features used by Wenlong Wu are categorical household
ID, mean meter reading of the household, and time-related
features like day of week, day of month and month encoded
cyclically using sine and cosine functions, such that January
and December are defined as similar.

Steffen Limmer’s approach (second place) [3] is based
on k nearest neighbors, the following sequence of steps is
considered: data preprocessing, outlier removal (by computing
the base distributions and filtering out abnormal distributions
using isolation forest), an ensemble strategy to predict the
monthly consumption and finally scaling. In the prediction
step, the distribution of a meter is predicted as the average
over the distributions of k nearest base meters (without the
outliers) and then the monthly consumption is computed based
on the distribution prediction and the December consumption.

E. The proposed approach with the battery trick

In addition to our proposed scalable ensemble approach
that ranked third in the competition, we also consider its
modified version that uses the battery trick, which is applied
in the method that ranked first and explained in Section IV-D.
This modification would enable our proposed approach to
outperform the first ranked method in the competition, as
shown in Section IV-G.

F. Run times

The proposed method takes around 45 minutes to run on
a machine with 9th Generation ”Coffee Lake” 2.6 GHz 6-
Core Intel Core i7 mobile processor (I7-9750H), MacOS
operating system, Python version 3.8.3: 20 seconds to generate
the clusters, 19 minutes to determine the closest cluster for
all inference cases of all profiles, 25 minutes to build the
predictions and 40 seconds for ensemble and smoothing.
Besides the training and ensemble/post-processing pipelines,
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the method is parallelised on 4 threads. It could easily be
parallelised with more threads to speed up the process even
more.

The Light GBM model, by Wenlong Wu, takes 1h45 to run
on the same machine1. It should also be noted that this method
requires one light GBM model per smart meter individually,
which reduces its applicability and scalability.

The run time of the KNN-Isolation forest ensemble method,
by Steffen Limmer, could not be measured as the code was
not made available.

G. Results & discussion

The results are presented in Table I. The ratio based
approach described in this paper is compared with several
standard time series techniques presented in Section IV-D.
These techniques have been considered as they are often used
and recognized as accurate methods in forecasting problems.
From Table I, three main conclusions can be drawn. First,
it is clear that for each method the monthly performance
is worse than the yearly performance. This makes sense as
the stochasticity due to human behavior and the influence
of external factors such as the weather, averages over the
course of one year, the error is thus reduced. Secondly, the
performances of the LR and ARIMA models are lower than
the more complex and advanced top three methods. Finally, it
can be noticed that the proposed method with the additional
battery trick ranks first, with a higher scalability than the light
GBM model.

Table II presents a comparison of the top three methods’ per-
formance metrics, when the faulty smart meters are removed
from the evaluation. The removed faulty smart meters are the
same 32 smart meters treated by the “battery trick” detailed in
Section IV-E. The method proposed in this paper outperforms
the two other approaches.

A t-test [31] was performed on the two sets of monthly
errors to assess the statistical difference between the per-
formance of Light GBM model (which ranked first in the
competition) and the proposed scalable ensemble approach
with the battery trick (which outperforms Light GBM). The
null hypothesis is that there is no statistical difference between
the performance metrics of both methods. The p value obtained
is 0.00958. The null hypothesis is thus rejected and we can
conclude that there is a statistical difference in performance
metrics between both methods with with p < 0.005. The same
t-test was performed on the two sets of monthly errors after
removing the faulty smart meters. The p value obtained is
0.01233, the null hypothesis is thus again rejected and we can
conclude that there is a statistical difference in performance
metrics between both methods with with p < 0.005.

H. Hyperparameter sensitivity study of the proposed method

The method makes use of only three hyperparame-
ters through the different steps: the minimum cluster size
nmin,cluster, the number of nearest neighbors nsimilar, and the

1We have executed the code that was provided by the authors on the same
machine.

Method Monthly
rAE Yearly rAE Total rAE

Our proposed approach
(Original submission

modified to include the
battery trick)

0.9802 0.2861 0.6332

1st place: Light GBM
(Original submission

includes the battery trick)
1.0078 0.2864 0.6471

KNN-Isolation forest
ensemble (Original

submission modified to
include the battery trick)

1.06905 0.28633 0.67769

2nd place: KNN-Isolation
forest ensemble (Original

submission includes
outlier detection)

1.0728 0.2875 0.6801

3rd place: Our proposed
approach (Original

submission, does not
include the battery trick)

1.0828 0.2892 0.6860

ARIMA 1.3852 0.3844 0.8848

Linear Regression 1.4461 0.3333 0.8897

Naive baseline
(30th place) 1.4947 0.4345 0.9646

TABLE I. A comparison of three benchmark methods (naive baseline, linear
regression and ARIMA) and the top three methods in the IEEE-CIS contest
[3]. The methods proposed in this paper, are highlighted. Total rAE stands
for relative absolute error, which is the weighted average error of the yearly
prediction error and the monthly prediction error.

Method Monthly
rAE Yearly rAE Total rAE

Our proposed approach 0.9757 0.2885 0.6321

Light GBM 1.0165 0.2816 0.6491

KNN-Isolation forest
ensemble 1.0654 0.2887 0.6771

TABLE II. A comparison of the top three methods’ original submissions in the
IEEE-CIS contest when removing the faulty smart meter out of the evaluation
[3]. The method proposed in this paper, is highlighted. Total rAE stands for
relative absolute error, which is the weighted average error of the yearly
prediction error and the monthly prediction error.

window length w for smoothing. For the following parameter
values, we have observed insignificant difference in the total
absolute error: w = 2, 3, · · · , 7; nsimilar = 10, 20, · · · , 100;
nmin,cluster = 5, 6, · · · , 20. The best performance was ob-
tained with the minimum cluster size nmin,cluster = 10,
the number of nearest neighbors nsimilar = 50, and the
window length w = 5. See Appendix B for additional results.
The method is robust to the values of the hyperparameters,
as independently independently of the chosen hyperpareme-
ters, the total relative absolute error remains in the interval
[0.6860, 0.7243].

V. CONCLUSION

In this paper a method has been proposed to predict
the monthly and yearly electrical consumption of individual
households one year ahead based solely on historical data of
the previous year. The approach consists of different steps
applied sequentially: pre-processing, data augmentation and
normalization, clustering, prediction based on ratios and finally
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ensemble learning and post processing. This novel method fills
a gap in the literature by combining a forecast horizon (one
year ahead) and forecast granularity (individual household)
which has not been tackled yet. The model offers three main
advantages. (i) Low data requirement: the method works even
for households with only one month of historical data and
it does not require additional household-specific information
nor weather data. (ii) Scalability: the method has low compu-
tational requirements and does not involve household-specific
information collection through questionnaires. (iii) Accuracy:
the use case is based on data from the IEEE-CIS competition
and the third position in the competition demonstrates the
high performance of the model. The battery trick places the
method in the first position, without altering the scalability.
However, we think it is not a fair modification because it aims
to estimate problems in the ground-truth data to improve the
metrics, which wouldn’t provide any benefit in practice.

In future work, the method could be improved by detecting
outlier household profiles and defaults (i.e., measurement er-
rors) in the historical data and treating these with a customized
model. The model presented in this paper could also be applied
on new datasets in order to assess the generalization of the
method. As suggested in the literature [9], the approach could
also be applied in the context of higher granularity forecasting
by aggregating household predictions to the national level.
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APPENDIX A
DETAILS ON THE RESULTS

To better understand the approach proposed in this paper, it
can be divided into several subcomponents and the impact
of each one of them on the final performance metric can
be analyzed. We start from the naive baseline detailed in
Section IV-D, with a totalrAE of 0.96. Then a prediction was
built based on the sign-up month. That lead to a more accurate
prediction, reducing the totalrAE to 0.86.

The second step considered was ensemble learning and data
augmentation. The same average relative consumption across
all meters was used but assuming that a meter could have
signed up in different months. This improved the accuracy of
the prediction down to a totalrAE of 0.80.

Third, the clustering based on k-means was introduced for
meters that signed up in November or earlier, which improved
the prediction to 0.75 totalrAE.

Fourth, k-nearest neighbors was considered for meters that
signed up in December, which improved it to 0.72 totalrAE.

Fifth, post-processing and smoothing were added, which
improved the prediction to a totalrAE of 0.69.

Finally, 32 profiles with zero values for November and
December were detected and their prediction was set to zero.
This improved the prediction to a totalrAE of 0.63.

In short, each of the individual components of the method
has a similar effect as each yields a reduction between 0.03-
0.05 in the totalrAE.

APPENDIX B
DETAILS ON THE HYPERPARAMETER SENSITIVITY STUDY

Independently of the chosen hyperparemeters, the total
relative absolute error remains in the interval [0.6801, 0.7243],
as is shown in Table III. The mean and standard deviation
of the total relative absolute error are respectively equal to
0, 6991 and 0, 01034.

Min
cluster

size

Nb of
nearest
neighb.

Window
size

Monthly
rAE

Yearly
rAE Total rAE

10 50 2 1.1039 0.2860 0.6950

10 50 3 1.0993 0.2857 0.6925

10 50 4 1.1039 0.2860 0.6950

10 50 5 1.0728 0.2875 0.6801

10 50 6 1.1039 0.2860 0.6950

10 50 7 1.0987 0.2913 0.6950

10 10 5 1.0918 0.2879 0.6898

10 20 5 1.0908 0.2876 0.6892

10 30 5 1.0908 0.2873 0.6890

10 40 5 1.0909 0.2871 0.6890

10 60 5 1.0909 0.2869 0.6889

10 70 5 1.0912 0.2868 0.6890

10 80 5 1.0917 0.2868 0.6892

10 90 5 1.0919 0.2868 0.6893

10 100 5 1.0922 0.2867 0.6895

10 50 5 1.1208 0.2922 0.7065

5 50 5 1.1269 0.3146 0.7208

6 50 5 1.1459 0.3026 0.7243

7 50 5 1.1358 0.2994 0.7176

8 50 5 1.1328 0.2987 0.7157

9 50 5 1.1012 0.2898 0.6955

10 50 5 1.1193 0.2905 0.7049

11 50 5 1.1141 0.2901 0.7021

12 50 5 1.1254 0.2896 0.7075

13 50 5 1.1210 0.2903 0.7056

14 50 5 1.1257 0.2920 0.7088

15 50 5 1.1212 0.2911 0.7061

16 50 5 1.1175 0.2904 0.7040

17 50 5 1.0973 0.2875 0.6924

18 50 5 1.0972 0.2879 0.6926

19 50 5 1.1181 0.2890 0.7035

20 50 5 1.1074 0.2886 0.6980

TABLE III. Comparison of the performance metrics of the method when
varying the values of the three hyperparameters. The chosen hyperparameters
are highlighted.
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